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Abstract
The global importance of online advertising calls for a detailed understanding of consumer-specific responses to online ad
repetitions. A key concern for advertisers is not only whether some consumers display degrees of “wearout” but also whether
they can surpass a point at which additional exposures have a negative marginal effect: “weariness.” The authors examine a large-
scale advertising campaign aimed at driving viewers to a target website, which comprises more than 12,000 users across over 400
websites. These data are analyzed using a flexible discrete mixture specification that accommodates different response shapes
over ad stock and timing and parcels ad viewers into response classes based on their internet usage metrics. The resulting classes
display varying degrees of wearout, with one subgroup, accounting for about 24% of the sample, evincing weariness. The model
also estimates differential publisher effectiveness, with the most effective publisher being nine times more effective than the one
26 places down. The authors demonstrate that the finding of weariness is robust to all the model’s main components, with one
key exception: heterogeneity in users’ ad response. Analysis further suggests that an appropriate “profiling and capping” strategy
can improve ad deployment by as much as 15% overall for these data.
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Global advertising spend stands at over $530 billion, grow-

ing at a 4% clip over the last five years. Most of this

growth is spurred by digital advertising, which currently

accounts for more than a third of all ad expenditures and

nearly 20% of average growth (Interactive Advertising

Bureau and PricewaterhouseCoopers 2017). Online adver-

tising has emerged as a critical marketing tool, and its

effectiveness has been affirmed through consumers’

click-through rates (Chatterjee, Hoffman, and Novak

2003; Hoban and Bucklin 2014; Schwartz, Bradlow, and

Fader 2017), web browsing (Rutz and Bucklin 2012),

online repurchase decisions (Manchanda et al. 2006), off-

line sales (Lewis and Reiley 2014), and long-term brand

awareness (Drèze and Hussherr 2003).

Central to understanding advertising effectiveness is the

concept of the response function—namely, the relationship

between an outcome of interest (e.g., site visits, downstream

sales) and advertising effort, assessed through various metrics

(e.g., exposures, spend, ad stock). The broad consensus both

in academia and managerial practice is that market response

to advertising effort is nonlinear. That is, more intensive

advertising leads to a stronger market response, but with

diminishing marginal effectiveness—a concept sometimes

generically referred to as “wearout.” It has long been theo-

rized that too many exposures beyond some threshold can

even have a negative impact on market- or individual-level

response (Calder and Sternthal 1980; Pechmann and Stewart

1988; Tellis 1988).
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Online advertising environments encourage intense com-

petition among advertisers for consumers’ attention, which in

turn results in repetitive exposures, ostensibly to break

through the clutter (Yaveroglu and Donthu 2008). For

instance, a typical internet user is exposed to more than

1,700 banner ads per month (Morrissey 2013). Compounding

the problem is the nature of the medium: vivid ads are dis-

played in parallel to the website’s main content (Drèze and

Hussherr 2003) and seem to actively encourage divided atten-

tion (or even inattention) compared with the intrinsically

sequential nature of radio or TV ads. Internet users have

voiced concerns about unpleasant experiences from too many

repeated exposures haunting their online paths. According to a

survey by Upstream (2012), two-thirds of adults in the United

States and United Kingdom reported experiencing digital

advertising overload and negative reactions, such as “stop

using the brand” (27% of U.S. adults) and “avoid the future

message” (28% of U.S. adults).

In this article, we characterize the shape and dynamics of

the online display advertising response function at the indi-

vidual level. Specifically, we investigate the relationship

between exposures to banner advertising from a financial ser-

vice provider (hereinafter referred to as the “advertiser”) and

the visits to their website (i.e. the view-through). Compared

with metrics such as site actions (e.g., requesting information)

or downstream sales, view-through provides a more direct

measure of campaign effectiveness, one less prone to contam-

ination by other contextual variables. For instance, a consu-

mer’s decision to purchase a specific product over its rivals is

typically affected by factors such as local availability, the

point-of-purchase marketing mix, alternative options, pur-

chase timing, and so on that are not necessarily related to the

advertisement. How likely users are to make a site visit pro-

vides a rough approximation of their conversion value to the

firm (Dalessandro et al. 2012) and has consequently served as

a dependent measure (Braun and Moe 2013; Manchanda et al.

2006); moreover, it is less volatile than incremental sales or

conversions, which often present a lack of statistical power

(Lewis and Rao 2015). Park and Park (2016) showed, for

example, that consumers’ online store visits tend to vary in

intensity, with a larger number of visits predicting higher

conversion probability.1

We develop a model that relates a cumulative measure of ad

exposure and the spacing between exposures to subsequent

website visits to the advertiser, thereby allowing ads to be

deployed more effectively. The model is flexible enough to

accommodate a wide range of qualitatively distinct contours,

particularly with respect to advertising repetition. Specifically,

the model must be capable of capturing not only gains and

regions of indifference, but also negative consequences as

exposures accumulate, if such effects indeed exist. For this

reason, the model will allow for a variety of individual-level

response shapes but will not mandate them; it does not impose

linearity, or even monotonicity, much less an eventually

downward-sloping ad response function.

Moreover, it takes detailed account of the empirical nature

of observable daily response, which is frequently zero visits,

and—conditional on visiting on a given day—the modal num-

ber of visits is one. We use a mixture model that accounts for

the excessive number of non- and single daily visits, as well as

accommodating users who visit frequently. Importantly, the

model also allows natural classes of response shapes to emerge

from a general account of parametric heterogeneity. If distinct

(parametric) user segments exist, the model can detect them

alongside other qualitative differences in response. Because we

do not impose any a priori functional differences across these

(latent) segments, any manifestation of different response

shapes across the classes is not guaranteed unless the data

themselves support them. Individuals’ membership in these

segments is further linked to their observable characteristics,

which, in our implementation, includes several distinct aspects

of their browsing patterns.

The proposed model accounts for another key feature of

display advertising: the differential effectiveness of publishers

(i.e., the sites posting ads for the focal campaign) to drive visits

to the advertiser’s website. With the large and growing number

of online publishers (e.g., 13 million alone in Google AdSense

[2018]) and the variety of contracts available (e.g., real-time ad

exchange, reservation-based ad contract), the need for adver-

tisers to distinguish the relative efficacy of alternative publish-

ers is ever more important. Although several studies have

attempted to address this issue analytically (Balseiro et al.

2014; Berman 2017), evidence remains equivocal. Our empiri-

cal model measures the differential effectiveness of various

publishers among the users who elect to visit their sites. Note

that this differential effectiveness is that of publishers, not

different media such as email and paid search advertising, as

has been addressed in other marketing studies (e.g., Danaher

and Dagger 2013; Kireyev, Pauwels, and Gupta 2013; Li and

Kannan 2014; Shao and Li 2011).

We apply our model to a data panel containing individuals’

advertising exposures (timing and publisher information) and

their subsequent visits to the target site. Our results show clear

evidence for the existence of a subset of users who are past the

point at which an additional ad serves to increase their number

of visits to the advertiser’s website and, in fact, reduces it. We

use the term “weariness” to refer to situations in which a user’s

advertising response curve slope becomes negative beyond

some specific degree of cumulative advertising impressions.

Investigating weariness is particularly critical in online adver-

tising environments, because their low cost, ease of creation,

and seemingly limitless channels can lead to excessive expo-

sures to some users. This central finding of weariness critically

relies on allowing for response heterogeneity. With a

1. Park and Park (2016) also found a temporal variation period of *.81 days,

suggesting that modeling daily number of visits (to capture conversion value) is

particularly appropriate. When consumers are actively deliberating on

(financial service) information, multiple site visits are common, so daily

visit volume is a proper metric to capture ad performance. We note as well

that view-through is distinct from click-through, which records actions to

specific ads, and is well-suited to capture longer-term ad exposure effects.
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homogeneous response function (as a benchmark), we observe

a globally increasing and concave response function, consistent

with other empirical findings in the literature.

We also observe each user’s browsing activity (e.g., online

usage frequency, breadth of searching, browsing preferences of

specific topics), which is used to profile the revealed ad

response classes. Such individualized data allow for not only

a finer-grained post hoc portrait of reaction to advertising

within the range it is actually practiced but also an assessment

of individual user value before any ads are served in a focal

campaign. Coupled with publisher effectiveness measures from

the model, such information helps advertisers assess when spe-

cific users may be approaching the point at which additional

advertising is overtly detrimental and thereby set appropriately

individualized advertising strategies.

The remainder of the article is organized as follows. In the

next section, we briefly discuss findings for advertising

response functions in traditional and online media. We then

elaborate the proposed model, estimation procedures, and a

description of the empirical setting. In the remaining sections,

we discuss inference and present estimation results, followed

by substantive conclusions and discussion.

Advertising Response Functions

The history of advertising research is rich, from lab studies to

empirical modeling, to identify functional relationships—that

is, response functions—to advertising over intensity (i.e.,

repetition) or time (Calder and Sternthal 1980; Craig,

Sternthal, and Clark 1976; Little 1979). Empirically esti-

mated response function shapes have suggested that addi-

tional ad exposures lead to stronger response but that the

marginal effect of each exposure can differ over the observed

range of ad intensity.

To address this nonlinearity, advertising researchers intro-

duced, and empirically validated, both the wear-in and wearout

of advertising (Corkindale and Newall 1978; Naik, Mantrala,

and Sawyer 1998; Pechmann and Stewart 1988). “Wear-in”

refers to increasing the marginal effectiveness of advertising

(on the outcome of interest, usually sales) with successive

exposures, ordinarily detected at the outset of a given advertis-

ing campaign (Rao and Miller 1975; Terui and Ban 2008;

Vakratsas et al. 2004). By contrast, “wearout” is the leveling

out over ad repetitions in the so-called long-run (i.e., worn-in)

level of sales. However, this definition includes several possi-

ble patterns, among them two that are of primary interest in the

present study: (1) diminishing, but always positive, marginal

response and (2) eventual negative marginal effects.

Complicating matters is that the empirical literature on

advertising effectiveness has adopted a variety of functional

definitions for wearout. For example, studies using a state-

space model for advertising stock (“AdStock”) define wearout

as diminishing returns on otherwise positive effects (Bruce,

Foutz, and Kolsarici 2012; Naik, Mantrala, and Sawyer 1998;

Nerlove and Arrow 1962), whereas other definitions allow

advertising effectiveness to hit a peak and thereafter display

negative marginal effects (Chatterjee, Hoffman, and Novak

2003; Tellis 1988). A key question, therefore, is whether adver-

tising can ever negatively affect performance (in sales, primar-

ily, or in some other measure of interest).

Distinct from the general notion of wearout, we refer to this

decreasing response—wherein the response function has neg-

ative slope beyond a threshold degree of ad exposure—as

“weariness.” Such concepts do have antecedents in prior mar-

keting literature. For example, high levels of advertising lead-

ing to diminishing marginal response (i.e., wearout) have

been referred to as “saturation” and, by analogy, high-

enough levels to actually worsen response (i.e., weariness)

as “supersaturation” (Doyle and Saunders 1990; Van Diepen,

Donkers, and Franses 2009).2

Laboratory studies suggest that repeated ad exposures can

have negative effects, such as decreased attention, comprehen-

sion, and, ultimately, adverse reaction, by inducing tedium

(Calder and Sternthal 1980) and negative cognitive responses

(Belch 1982). The ensuing behavioral literature has clarified

mechanisms leading to diminishing or decreasing effects (e.g.,

Anand and Sternthal 1990; Batra and Ray 1986), shed light on

different advertising or attitudinal metrics affected by repeti-

tion (e.g., Haugtvedt et al. 1994), and investigated moderating

factors between repetitions and attitudinal response (e.g.,

Campbell and Keller 2003).

In contrast to these behavioral findings, empirical evidence

for weariness in field data is remarkably scarce. For instance,

Naik, Mantrala, and Sawyer (1998) tested for repetition wearout

effects in two sets of market data and found an insignificant

result in one setting and unimproved model performance in the

other (a model with a wearout component did not perform better

than a benchmark lacking it). Similarly, Bass et al. (2007) did

not discover repetition wearout when an advertiser employed

different themes in the campaign. More recently, in an e-

commerce setting in which competitors coexist, Sahni (2016)

demonstrated increasing ad effectiveness with mild nonlinearity

across discretized exposure brackets (1–3, 4–7, 8–10, and >10),

with equivocal results with regard to the existence of weariness

(albeit not a focus of his study). Finally, Lewis (2017) investi-

gated degree of wearout heterogeneity from 30 field experimen-

tal campaigns, during which online users were repeatedly

exposed to advertisements, with their click-throughs and conver-

sions traced. He categorized wearout effects for the 30 cam-

paigns into four types (i.e., constant return to scale vs. fmild,

moderate, extremeg wearout), but none of the 30 campaigns

suggested evidence of negative consequences of high levels of

ad repetition (i.e., weariness).

The lack of consistent evidence for the existence of weari-

ness across laboratory and field settings might be attributed to

2. Despite some degree of conceptual overlap and mixed usage, saturation and

wearout can be understood as the result of the former phenomenon affecting the

latter; for example, media saturation over a short space of time can lead to ad

wearout (Brown 2012). Because the present study does not address underlying

mechanisms (e.g., supersaturation), we refer exclusively to the resultant

concept, weariness.
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three potential sources. First, it may reflect differing levels of

analysis and/or circumstances (Craig, Sternthal, and Clark

1976; Pechmann and Stewart 1988): lab experiments study

individual responses to displayed ads, whereas empirical

(field) studies nearly always analyze market-level exposure

data (for recent exceptions, see Sahni [2016] and Lewis

[2017]). Second, there is weak evidence for weariness

because the range in which advertising actually occurs is gen-

erally appropriate, neither too high nor too low. That is, obser-

vant advertisers might learn through trial and error to avoid

costly ad repetitions at the point where overtly negative

effects are apparent. Third, several previous models have, for

reasons of parsimony and estimation efficiency, imposed non-

negativity constraints on additional ad exposure effects (e.g.,

those in the Nerlove and Arrow [1962] framework, where rate

of change in advertising goodwill relates positively, with

diminishing returns, to ad expense and/or number of repeti-

tions; Bass et al. 2007; Braun and Moe 2013; Naik, Mantrala,

and Sawyer 1998). Although such constraints can enhance

model fit and empirical identification, they also smooth out

(or rule out) the potential to detect weariness.

Our article contributes to this literature by providing evi-

dence that there can be threshold levels of ad repetition past

which marginal response is indistinguishable from zero and

even demonstrably negative. Previous research has found an

average ad frequency far greater, sometimes nearly 50 times so,

for online advertising compared with traditional channels.3 The

uptick in ad repetition provided by the online platform provides

researchers, for the first time, a firm basis on which to empiri-

cally examine the existence and extent of weariness.

The proposed model affords flexibility along several dimen-

sions, sidestepping functional restrictions found in prior liter-

ature that may mask the potential manifestation of negative

consequences of advertising repetition. Allowing for heteroge-

neity in response function parameters is critical to detect seg-

ments that evidence weary response functions. The latent class

formulation effectively clusters those users with similar

response patterns, discriminating those whose response is fairly

linear from those exhibiting pronounced nonlinearity, includ-

ing users with significantly nonmonotonic (i.e., weary) rela-

tionships to advertising exposure.

As alluded to previously, we show that observable,

individual-level behavioral characteristics (i.e., browsing beha-

viors such as online frequency and breadth of browsing) help

profile consumers into the identified segments. Such browsing

behavior variables are readily collectable in online marketing

systems through server log data stored in the ad network (as in

this study). Scraping users’ online cookies is an alternative

method of collection, though this presents challenges to current

data collection systems owing to the natural churn or removal

of cookies from user devices after a specified period. Identify-

ing individuals’ membership within segments that vary in

response (and curvature) across advertising control variables

(e.g., repetition, timing) is critical for advertisers to plan user-

or segment-specific advertising schedules.

Model Development

We model the number of visits yit made by individual i on day t

to an advertiser’s website4 by consumers who have been

exposed to banner ads placed on various publishers’ sites

(j ¼ 1, . . . , J). Each user provides insufficient data to calibrate

an individual-level ad response function, but these can be

grouped (into latent classes) on the basis of similarity of

response; critically, users’ browsing behaviors can differen-

tially “profile” them into the derived latent class groups.

The model is motivated both by the nature of the out-

come variable and by several empirical patterns apparent in

our data (as well as in prior studies of online advertising;

Manchanda et al. 2006; Rutz and Bucklin 2012). Prominent

among these patterns is one in Figure 1, Panel A: a high

proportion—96% of the total—of “no visits” (yit ¼ 0) to the

target website, as well as a large mass of single daily visits;

although observations with yit ¼ 1 comprise only 1.6% of

all observations, they account for more than 44% of all

nonzero counts. A second important characteristic of the

distribution of daily visits is its heavy right tail: conditional

on visiting more than once, there is a small but important

mass of observations with many visits.

This empirical distribution reveals three distinct categories

of daily visit counts (i.e., 0, 1, or “more than 1”). We can

conceptualize these categories as having different roles in the

process of site visitation. That is, there are both quantitative and

substantive differences between zero, one, and more visits,

related to successive decisions about “Should I visit at all?,”

“Should I visit again?,” and “How many times?” Models that

only account for excessive zeros would lead to a poor fit, given

the empirical distribution of our response variable yit: either the

mixture distribution would focus on the single-visit occur-

rences, ignoring the heavy tail of larger numbers of visits, or

it would accommodate the tail at the expense of underestimat-

ing the mass of observations at yit ¼ 1.

Response Model for Site Visit Counts

We therefore tailor our model to account for excessive zeros

and ones by defining a discrete mixture,

PrðY ¼ yitÞ ¼
f0it if yit ¼ 0

f1it if yit ¼ 1

f2it � p2ðyitÞ if yit � 2

;

8><
>: ð1Þ

3. Online users have been documented as receiving 20 repeated brand

advertisements over 32 weeks (Chatterjee, Hoffman, and Novak 2003), 5

over 10 weeks (Braun and Moe 2013), and 6 over 10 weeks (in the present

study). By contrast, pre-internet advertising entailed radically smaller rates,

with 1.3 repeated brand ads observed over 84 weeks (Deighton, Henderson, and

Neslin 1994) and 6 over 96 weeks (Siddarth and Chattopadhyay 1998).

4. A “visit” consists of a series of page views, each separated by less than ten

minutes, from the same source.
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where f0 it and f1 it capture the probability mass at zero

and one, respectively. For visit counts larger than one,

we allow for a discrete distribution, f2it � p2ð y itÞ; with

support over y it � 2; probability masses must sum to one:P2
q¼0

fqit ¼ 1 and
P1
y¼2

p2ð yÞ ¼ 1.

The second important characteristic of the distribution of

daily visits is its heavy right tail. Simple maximum likelihood

tests on our data set5 reveal that the log-normal performs far

better than the normal, the Poisson, and the negative binomial

distribution densities to capture the “greater than one” visit

distribution. This is unsurprising regarding the Poisson, which

as a single-parameter distribution can be expected to perform

poorly with overdispersed data. The superior performance of

the log-normal over the normal distribution in particular can be

explained by a better fit for skewed distributions (Limpert,

Stahel, and Abbt 2001). To accommodate heavy tails, the dis-

crete probability mass function p2(yit) is based on a discretiza-

tion of the log-normal distribution, defined for integers larger

than one (i.e., shifted by two) as follows:

p2ðY ¼ yitjmit; tiÞ

¼

F
�

lnðyit � 1:5Þ � mit

ti

�
yit ¼ 2

F
�

lnðyit � 1:5Þ � mit

ti

�
� F

�
lnðyit � 2:5Þ � mit

ti

�
yit>2

;

8>>>>><
>>>>>:

ð2Þ
where Fð:Þ denotes the standard normal cumulative density

function. Note that this is not an approximation, but a legiti-

mate probability mass function with prior applications to count

data (Chakraborty 2015).

To measure the effects of advertising on a consumer’s view-

through behavior, we model the probability of a nonvisit (f0 it),

a single visit (f1 it), multiple visits (f2 it), and the mean para-

meter (m it) of the count values of further visits as functions of

individual-specific advertising exposure covariates (A it; z it;
and n itÞ, individual-specific baselines (i.e., random intercepts

u i), and idiosyncratic errors (i.e., extreme value and normal

distributions, respectively), unrelated to advertising effects. We

model the zero-one-multiple visit masses as a conditional mul-

tinomial-logit,

fqit ¼
expðVqit þ uiqÞP2

r¼0 expðVrit þ uirÞ
for q 2 f0; 1; 2g; ð3Þ

and the mean parameter m it of the discretized log-normal

p2ð y; m it; t iÞ as

logðmitÞ ¼ V3it þ ui3; ð4Þ

where, in all cases, V denotes a deterministic function of cov-

ariates and u is a consumer-specific random intercept term. For

identification purposes, the value of the “no visit” option

(q ¼ 0) utility is taken to be zero: V0 it þ u i0 ¼ 0. We use the

same functional form for all three V qit; q 2 f1; 2; 3g;

Vqit ¼ aq1 þ aq2Ait þ aq3A2
it þ aq4zit þ aq5z2

it þ aq6 nit

þ aq7 nitAit þ aq8 nitzit:
ð5Þ

Here, A it is i’s advertising stock (“AdStock,” as defined

subsequently) at time t, z it is elapsed time since a user’s last

ad exposure (Calder and Sternthal 1980), and n it is an indi-

cator for whether the user has visited the site within the

seven-day period before time t. This previous visit variable

is included to control for unobserved, individual-level factors

that potentially influence both having already visited and

visiting in the current period. Such inclusion of lagged

dependent variables can help mitigate potential autocorrela-

tion (Germann, Ebbes, and Grewal 2015) and provide more

robust estimates (Keele and Kelly 2005). To allow for poten-

tial nonlinearity in the marginal response, we include quad-

ratic terms for both AdStock and time from the last exposure,

as well as interaction terms with the within-a-week visit vari-

able, n it.
6 To enable the model to be built up in stages, we
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Figure 1. Histograms of number of visits and number of impressions
per person.

5. Specifically, the maximized “zero-one-more” mixture model log-likelihoods

are -168,450.7 for the Poisson (3 d.f.), -142,443.5 for the normal (4 d.f.),

and -139,462.1 for the log-normal (4 d.f.). These analyses do not include

covariates and heterogeneity.

6. We found the one-week “Did they visit at all?” window to be empirically

superior to other common measures that summarize prior visit history, such as
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mean-center all variables, so that adding or removing one

will have a far smaller effect. This also helps interpretations

of higher-order terms and interaction effects (Irwin and

McClelland 2001), and, in our application, with estimation

efficiency.

The individual-specific random intercept terms u i are

included to capture visit tendencies driven by individual factors

other than advertising exposure (e.g., word of mouth). We

therefore include random intercept terms for both the multi-

nomial (f u i1; u i2g) and the discretized log-normal (u i3)

components and allow them to be correlated across the speci-

fications: u i*N3ð0;SÞ for u i ¼ ½ u i1 u i2 u i3�. Note that

these are individual-specific deviations from the respective

overall intercept terms in each specification, such that the joint

mean is identically zero.

AdStock Across Publishers with Differential Impact

A key component of our formulation is an individual- and time-

specific measure of cumulated advertising exposure, or

AdStock, that considers both the carryover property of classic

AdStock dynamics (Naik, Mantrala, and Sawyer 1998) and the

differential effects of each publisher. We thereby specify

AdStock to allow for three key properties: (1) geometric

weighting over time periods, (2) weighted aggregation across

publishers, and (3) diminishing marginal returns to advertising

exposures. First, we adopt the Koyck specification (Bass and

Clarke 1972) for creating a geometrically smoothed index of

each publisher’s exposures:

xijt ¼ ð1� dÞiijt þ d� xijt�1;

where i ijt is subject i’s number of exposures of from publisher j, in

day t, and d 2 ½0; 1� is a carryover parameter. Note that, if adver-

tising is held constant at i ijt ¼ �i ij, in the long run x ijt ! �i ij.

One convenient, yet seldom empirically justifiable, assump-

tion is that a given ad’s impact is largely independent of the

website on which it was shown. However, some sites have

much higher ad density than others, place ads in less prominent

positions, or otherwise differentially compromise the potential

for the ad to spur the target behavior. Therefore, we construct

the “smoothed advertising index” (SAI), a summary measure of

Koyck indices weighted by each publisher’s estimated relative

effectiveness parameter, l j:

SAIit ¼
XJ

j¼1

ljxijt: ð6Þ

As we detail subsequently, we operationalize fl jg to nest

the usual homogeneous publisher effects model (l j ¼ 1) via

a gamma density with mean 1. This avoids inflating the

overall impact of advertising and offers the benefit of mea-

suring its dispersion via the gamma variance. That is, if

publishers’ messages are roughly equally effective, fl jg
will have low variance.

Advertising has been applied in explicitly logarithmic form

in a wide variety of empirical settings (Bass 1969; Rao 1972;

Steenkamp et al. 2005; Van Heerde, Gijsbrechts, and Pauwels

2015, p. 683), capturing diminishing marginal returns, and we

adopt this as follows:

log½ SAIit þ 1� ¼ log
XJ

j¼1

ljxijt

 !
þ 1

" #
:

Note that this measure relies primarily on three former treat-

ments, namely Doyle and Saunders (1990), Manchanda et al.

(2006), and Danaher and Dagger (2013), each of which helps

incorporate advertising efforts spread across venues, consu-

mers, and time in a manner exhibiting diminishing marginal

returns to additional impressions. Manchanda et al. (2006) con-

structed an individual-level summary measure of the form

log(1 þ A), with contemporaneous, not cumulative, effects

of the number of ad impressions; their study does not, however,

differentiate ad effects across different media or publishers. By

contrast, both Doyle and Saunders (1990) and Danaher and

Dagger (2013) aggregate the effects of ad expenses across

different media types—the former using aggregate data to

smooth over time periods and campaigns, and the latter using

“before–after” data to cumulate across a variety of media at the

individual level. Although both articles use a weighted sum

formulation, their data consists of different messages/channels,

allowing them to study diminishing advertising effectiveness in

each message/channel separately. In our study, the same mes-

sage is delivered across publishers, whose effects are aggre-

gately cumulated into the AdStock. This distinction is

manifested in the modeling assumptions: while the models

from Doyle and Saunders and Danaher and Dagger enacted the

logarithmic transformation for each message type separately,

after which they were linearly weighted, we impose the log-

transformation after aggregating each publisher’s effect and its

corresponding AdStock x ijt.

Finally, we subtract off the same “mean” (the one corre-

sponding to l j ¼ 1) to obtain what we refer to subsequently

as “AdStock,” a measure that nests the classical, mean-

centered, variant:

AdStockit ¼ log
XJ

j¼1

ljxijt

 !
þ 1

" #
� �x; ð7Þ

where �x ¼
PN

i¼1

PT i

t¼1 log
P J

j¼1 x ijt

� �
þ 1

h i
PN

i¼1 T i

is the mean of

the number of exposures for the homogeneous model (i.e.,
equal publisher weights, flj ¼ 1g).

Heterogeneous Users

In addition to heterogeneous individual baseline intercepts u in

the three V portions of the model in Equations 3 and 4, it is critical
the number of times the user had visited in a week, whether (s)he had ever

visited before, or several variants thereof.
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to include heterogeneous sensitivity to advertising itself across

users. To capture a variety of advertising response profiles,

we introduce a latent categorical variable C i that takes the value

k (k¼ 1, . . . , K) if user i belongs to class k. Thus, the full model

can be specified via the following conditional likelihood for

observing a specific number of site visits, y it, by user i on day t:

fðyit jCi ¼ k;f1itk;f2itk; mitk; tkÞ

¼ ð1� f1itk � f2itkÞIðyit¼0Þ f1itk
Iðyit¼1Þ ½f2itkp2ðyit jmitk; t

2
kÞ�

Iðyit>1Þ;

ð8Þ
where the probabilities are defined as in Equations 2–5, with

f qitk and m itk reparameterized as functions of latent class para-

meters a qk. The variance parameters t2
k and S k are also sub-

scripted to reflect their being class-specific.

The model is completed with a specification of the catego-

rical class indicator, C i, which takes value k with probability

m ik, and is in turn related to an individual-level covariate vec-

tor w i through a multinomial logit model:

Ci * Catðmi1; . . . ;miKÞ ð9Þ

mik ¼
expðwigkÞPK

j¼1 expðwigjÞ
:

To enable model identification, the coefficients g1 for class 1

are set to zero. In simple terms, this portion of the overall model

takes the form of a concomitant latent class model (Dayton and

Macready 1988; Kamakura, Wedel, and Agrawal 1994).

The individual-level covariates w i are used to probabil-

istically parcel users into K classes, for which user-specific,

time-invariant variables (e.g., demographics) are commonly

used. However, in the online arena, acquiring user-specific

demographic information is uncommon outside limited

situations, such as where user registration is required

(e.g., online shopping applications); thus, the class prob-

ability or mixture proportion m ik is often assumed to be

constant across users, as opposed to a hierarchical structure

in which different users have distinct assignment probabil-

ity vectors (Rutz and Bucklin 2012). By way of contrast,

we make use of individual users’ behavioral metrics (i.e.

online browsing patterns) to inform their class membership.

Such metrics—including internet usage frequency, breadth

of distinct websites visited, and visiting trends that capture

degrees of interest in specified topics—can be assessed by

advertisers through user cookies. The online behavioral

variables ( w i) were collected over a longer time span and

averaged across the observation period; thus, they can be

regarded as largely static individual-level traits, as opposed

to short-term behaviors that can be confounded with ad

exposure. Note that given the hierarchical nature of our

model, these variables influence only class membership,

not the visit behavior. To further assess the viability of

treating these variables accordingly, we calculated the var-

iational overlap between an individual’s behavioral traits

and visits, finding these to be very low, ranging from

1.7% to 4.4% variance explained.

This latent class structure and the user-specific random inter-

cept term discussed previously provide a flexible heterogeneity

specification that can account for a wide range of responses. We

stress again that the latent classification is not based on response

curvature with respect to AdStock (i.e., differences in weari-

ness), but on a general account of parametric heterogeneity for

a variety of covariates (i.e., intercept, AdStock, Timing, Visit,

and interaction terms), as well as hierarchical class inclusion

probabilities based on browsing behavior metrics.

The model is estimated using a fully Bayesian approach.7 To

ensure a well-identified model with posteriors determined

almost entirely by the data, we assign weakly informative

diffuse distributions to all class-specific parameters. Prior

hyperparameters are set identically across classes. For the

coefficient parameters (a1k; a2 k; gÞ, we adopt normal priors,

while for variance parameters, we adopt log-normal and

inverse-Wishart priors. Finally, the prior distribution of para-

meters for the differential publisher effects is taken to be

gamma with, as described previously, a mean of 1 and a

variance of y, that is, Gammað shape ¼ y�1; scale ¼ y�1Þ,
so that larger values of y indicate greater variation in pub-

lisher effectiveness. For y, we use a noninformative hyper-

parameter prior, y * Unifð0; 1Þ. For completeness, the

full model, including latent class indicators, and the prior

specification appear in the Web Appendix W-A.

Under prior independence, the corresponding joint posterior

is given by

pðfakg; fSkg; fuig; fljg;C; fgkg jyÞ /YN
i¼1

XK

k¼1

fðmik jgk;wiÞ
YTi

t¼1

fðyit jak; lj; ui; t2
kÞfðuijSkÞ

" #
�pðakÞpðt2

kÞpðSkÞ
( )

�
YK
k¼2

pðgkÞ �
YJ

j¼1

pðlk jyÞ � pðyÞ:
ð10Þ

For posterior estimation, we use Metropolis–Hastings steps

with a treatment for missing online behavioral metrics for non-

visitors to the advertiser’s website (Web Appendix W-B). Web

Appendix W-C specifies the conditional densities and algo-

rithms in detail. Burn-in was set at 15,000 draws, with an

additional 15,000 used for parameter estimation. The conver-

gence of Markov chain Monte Carlo chains is assessed by

7. Various restricted versions of the model—for example, without

individual-specific intercepts or heterogeneous publisher effects—may be

much more quickly estimated through an expectation–maximization

approach (Dempster, Laird, and Rubin 1977). However, our analyses depend

on calculations across the entire posterior, not only its mode, necessitating

Bayesian methods.
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stable trace and density plots, as well as effective sample sizes

(all reported parameters have>100 effective samples) and Gel-

man–Rubin (1992) diagnostics. All parameters of substantive

importance (i.e., excepting the thousands of user-level inter-

cepts) show strong evidence of convergence. To assure model

validity and estimation accuracy, we simulate a data set using

the same covariates used in the actual estimation. Results show

that the model reliably recovers “true” parameter values;

details appear in Web Appendix Table W-1.

Data

Our main data provider for this research was numberly

1000mercis Group (“1000mercis” hereinafter), a large adver-

tising agency that purchases online ad space on behalf of its

clients. The data set pertains to advertising campaigns, focused

on desktop and laptop users, for a French financial firm that

offers credit services and loans. The firm runs two distinct

types of ad campaigns: acquisition, wherein the stated goal is

to entice viewers to visit its website (which is the firm’s pri-

mary focus), and retargeting (e.g., in the terminology of Lam-

brecht and Tucker [2013], “generic retargeting”), which

encourages viewers to complete desired actions (e.g., contact-

ing sales staff). Consumers subject to retargeting campaigns

were systematically selected before the campaign launched,

separately from the acquisition campaigns. As an independent

check, we confirmed this claim, finding no overlap across

campaigns (acquisition and retargeting). Consequently, our

data consist solely of an acquisition campaign, one intended

to reach a broad population. Strict privacy laws in France pre-

vented user-specific information (i.e., demographics) from

being used; the ad agency has further confirmed that its tech-

nology did not accommodate user-specific trait targeting for

mass online acquisition campaigns. Specifically, the ad alloca-

tion mechanism for the target campaign is based on publishers,

not users, ruling out a potential source of endogeneity (i.e., in

which more responsive users are targeted for advertising).

Moreover, ad exposures are randomly served across both users

and time within a publisher’s website. Such random frequency

greatly mitigates confounding selection bias between users’

browsing behaviors and ad responses, as in Lewis (2017). In

our “Empirical Results” section, we report direct checks that

strongly support 1000mercis’s claims regarding such nonendo-

genous targeting.

The banner ad campaign ran for a total of 72 days, from May

20, 2013, to July 31, 2013, urging consumers to visit the adver-

tiser’s website, where they could assess their own credit and

loan potential. The banners featured generic information (e.g.,

basic credit rates and repayment information, along with ima-

gery depicting occasions on which people typically seek short-

term financial assistance) and did not contain overtly affective

elements. The advertised credit service is often purchased

repeatedly, as needed, similar to cash-out services offered by

credit card firms.

Our data set thereby comprises three distinct individual-

level data sources:

� Daily advertising exposures captured from 473

publishers,

� Individual visitor logs collected from the advertiser’s

website, and

� Users’ browsing behaviors captured from an additional

200 websites that belong to 1000mercis’s ad network.

We selected users from among those who were exposed to

the ad agency’s top publishers and retrieved their ad exposure

information from other publishers, visitor behaviors to the

advertiser website, and browsing behaviors from separate data

sources. Because this specific campaign did not use a capping

strategy (i.e., limiting the number of ads delivered to each user

through a certain publisher or across publishers), we excluded

users who had an anomalously high number of ad exposures

(>99.99th percentile, or 920 in total) or site visits (>99.99th

percentile, or 119 overall), noting that doing so can only bias

against discovering weariness and never create it as an artifact.

(Subsequently, we perform robustness checks using alternative

exclusion rules.) Then, we randomly sampled 12,000 online

users, who closely matched the population in terms of distri-

bution of ad exposures and visits. Table 1 shows summary

information for the main variables.

In our data set, the 12,000 users are exposed to advertise-

ments at least once, for a total of 28,345 impressions and total

92,586 visits to the advertiser’s website during the campaign.

These exposures are placed across 473 distinct websites,

ranging from news portals and social networking venues to

dedicated corporate sites, and from local French websites to

well-known global sites.8 The distribution of number of expo-

sures across publishers is right-skewed, with over 83% of

impressions being placed by the top 27 publishers. To effi-

ciently estimate the site-specific differential effectiveness

indices, we treat these 27 major publishers as separate entities

and the rest as a distinct “all other publishers” category. We

calculate the variable “time elapsed since last exposure” with-

out regard to publisher placement. This variable serves to help

capture “copy wearout,” a potential decline in ad effectiveness

over time (Naik, Mantrala, and Sawyer 1998).

Users’ characteristics, as described previously, consist of

various browsing behaviors. To capture these characteristics,

Table 1. Data Set Summary Statistics.

Total number of observations 601,481
Total number of users 12,000
Average number of days observed (SD) 50.1 (13.4)
Average number of visits per user (SD) 7.7 (17.6)
Average number of visits per observation (SD) .15 (1.7)
Total number of publishers 473
Impressions accounted for by top 27 publishers 83%
Average number of days since the last exposure (SD) 20.2 (15.8)

8. Specific sites referred to in our analysis are proprietary and cannot be

publicly disclosed.
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we consulted an additional independent data set provided by

1000mercis that contained the same users’ browsing histories

(across 200 websites in 1000mercis’ networks). We defined

users’ online usage frequencies as the number of days

(“numDays”) they browsed in the entire set of networks and

defined browsing breadth as the number of distinct websites

(“numSites”) they visited per day. In addition, using category

information for the website networks, we constructed covari-

ates that are known to be either topically or behaviorally related

to the campaign and associated target website. Specifically, the

website networks cover a wide range of categories (about 20 in

all), such as e-commerce (38%), tourism (15%), and finance

(12%), among others. Among these categories, we considered

whether users’ browsing interests coincided with the industry

to which the advertiser belonged (e.g., finance), purchase inten-

tion (e.g., e-commerce), or general information gathering (e.g.,

media). These covariates used for profiling are not time vary-

ing, rather capturing their general online usage traits. Table 2

lists summary statistics of the target users’ browsing behaviors.

Empirical Results

Endogeneity Checks

The central inferential results from our model assume that

exposures are pseudo-randomized in a specific way: a user’s

prior behavior does not influence the probability of receiving

an exposure (i.e., there is no targeting based on past behavior).

As mentioned previously, the focal ad campaign does not avail

of any user-specific data to deliver ads; the ad-serving algo-

rithm is limited to publisher-level information, such as number

of users and cost per 1,000 impressions. Before presenting

model estimation results, we provide a series of data-based

checks against common endogeneity confounds.

The key question can be put simply: do users receive more

(or fewer) ad exposures after visiting the focal website?

Although this may seem simple, note that it can come about

in many ways that do not connote users being differentially

targeted on the basis of their actions, such as exposures increas-

ing overall over time or varying day-of-week usage patterns.

To check that the tendency to receive an ad exposure does not

hinge on the user’s focal behavior (visiting the advertiser’s

website), we first conducted simple paired t-tests for the num-

ber of impressions before and after a user’s visit (Table W-2).

We perform this analysis for the entire window of observation

(total number of impressions before and after the first visit,

Column 1); one week before and after the visit, to control

different time length effects (Column 2); and six, seven, or

eight days before and after the visit, to control both recency

and day-of-week effects (Column 3). The results connote the

opposite of what a targeting mechanism would (e.g., that users

should receive more impressions after a visit) and consistently

indicate nothing more than a general downward exposure trend

across the data window.

It is therefore necessary to consider when the first visit

occurs as well. We stratified the sample to control for users’

tendency to receive certain numbers of impressions at a certain

time (i.e., the time when the first impression occurs and the

number of impressions received that week). As an illustration,

we first isolate users who received one impression during week

2 (labeled “week 2: 1 impression” in Table W-3); we then

compare those who did versus those who did not visit the

website during the following week and then compute the num-

ber of impressions they received the following week. If there

were some specific targeting, we would expect to see that those

who visit in the following week (week 3 in our example) would

receive more impressions on average. We conducted this anal-

ysis for all combinations of (noninitial and nonending) weeks

f2,3,4,5,6g and number of impressions suitable for a statisti-

cally disconfirming finding, f1,2,3,4,5g (i.e., there were too

few observations for week 6 and up). In these 5 � 5 ¼ 25 tests

conducted simultaneously, two were significant at the .05 level

and none at .01. To pool statistical power, we further conduct

five tests combining data across blocks, finding none signifi-

cant even at .05. In summary, we find no evidence that visiting

the site yields differences in post visit exposure activity.

Model Selection

Selected values of several fit metrics are examined for carry-

over parameter d from 10% to 90% in 10% increments;

relevant latent class specifications (homogeneous and the best-

fitting models for each carryover parameter), both with and

without differential publisher effects; the average diffuseness

parameter (Eð yÞ; higher values indicate greater heterogeneity

in publisher impact); and proportions of users falling into each

latent class (Table W-4). We include four principal types of fit

metric: log-marginal densities (LMD), deviance information cri-

terion (DIC), elpdWAIC, and elpdIS-LOO. The first, LMD, is a

standard Bayesian model fit metric, but it can be sensitive to

prior specifications and posterior sample size. Like LMD, the

DIC (Spiegelhalter et al. 2002) provides a likelihood-based mea-

sure, but unlike LMD, it penalizes model complexity (i.e., over-

parameterization). The last two types, expected log predictive

density (elpd) measure out-of-sample prediction accuracy from a

fitted Bayesian model by approximating the expected log point-

wise predictive density: elpdWAIC is based on the Watanabe–

Akaike information criterion, or “widely applicable information

criterion” (Watanabe 2010), while elpdIS-LOO makes use of

importance sampling weighted leave-one-out cross-validation.

Gelman, Hwang, and Vehtari (2014) and Vehtari and Gelman

(2014) provide detailed definitions, calculation methods, and

differential benefits of each criterion for Bayesian model

selection.

Table 2. Summary of Browsing Behavior.

numDays: Number of days browsing the websites (SD) 2.7 (3.0)
numSites: Number of websites visited (SD) 1.8 (1.2)
e-Commerce: Percentage e-commerce 8.0% (22.5%)
Media: Percentage media 6.1% (20.0%)
Finance: Percentage financial services 8.5% (7.4%)
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Estimation of different latent class specifications (K ¼
1, . . . , 6) shows that five latent classes consistently perform

best for the range of carryover parameters (d) above 50%,

although the number of classes for the best fitting models fluc-

tuates when the parameter values are low (e.g., three for 10%,

two for 20%, and four for 30%–40%). The DIC and the two

elpd-based criteria consistently indicate that the model with

d ¼ 60% carryover, five latent classes, and differential (i.e.,

heterogeneous) publisher effects fits best. It is immediately

apparent that both sorts of heterogeneity—parametric (latent

classes) and publishers—are valuable. Furthermore, class allo-

cation and class-specific parameters are relatively invariant

when publisher heterogeneity is included (vs. not); analo-

gously, the diffuseness parameter y is largely stable across

different numbers of latent classes. Unless otherwise stated,

the remaining discussion of the results focuses on the best-

fitting model, namely K ¼ 5 and d ¼ 60 %: Table W-5 shows

that the degree of publisher heterogeneity is stable across K ¼
1, . . . , 6 latent classes (i.e., Eð yÞ ¼ .23, .29, .27, .24, .25, .24)

as well as listing class sizes.

AdStock, Timing, and Recent Website Visits

Model parameter estimates are listed in Table 3. For most of the

parameters comprising a1 k and a2 k, posterior mass is bounded

away from zero.9 By contrast, for the parameters in a3k, poster-

ior marginal distributions provide little evidence that any

specific parameter differs from zero. However, this ignores two

points: (1) for the discretized log-normal portion in particular

(for the “two or more” portion of the model), intercepts are

significant in three of the classes (2, 4, and 5), and these capture

the baseline tendency to revisit the advertiser’s website, and (2)

in a Bayesian model, “significance” needs to be assessed across

the joint posterior distribution of all parameters compared with

a base model. To this latter observation, we reestimate the

“best” model setting a3 k ¼ 0, except for intercepts, finding it

to fit far worse overall, across all fit metrics (decreases: LMD

9%, DIC 10%, WAIC: 9%, IS-LOO 7%). Taken as a whole,

parameter estimates indicate that, for this data set, advertising

not only determines the relative proportions of zero versus one

versus multiple visits but also selectively influences the actual

number of multiple visits for a particular group.

The proposed model, though parsimonious in terms of cap-

turing several forms of heterogeneity, has several parameters

large enough that viewing their summary measures together

(Table 3) does not provide an immediate substantive interpre-

tation. Instead, we project the parameters onto a managerially

relevant metric: expected number of visits to the advertiser’s

Table 3. Class-Specific Parameters.

K = 1 K = 2 K = 3 K = 4 K = 5

Parameters Mdn 2.5% 97.5% Mdn 2.5% 97.5% Mdn 2.5% 97.5% Mdn 2.5% 97.5% Mdn 2.5% 97.5%

a1 k _(Intercept) �6.73 �6.96 �6.51 �7.30 �9.41 �5.99 �4.09 �4.18 �4.00 �4.47 �4.57 �4.37 �3.32 �3.42 �3.21
_AdStock 4.83 2.53 7.22 6.03 2.86 9.69 5.68 4.43 7.01 4.58 3.70 5.69 2.47 1.22 3.76
_AdStock2 �2.73 �5.84 �.25 �4.84 �7.01 �2.75 �3.01 �4.37 �1.91 �2.81 �4.22 �1.82 �1.05 �2.14 �.11
_Time �.19 �.37 �.01 �.21 �1.59 1.46 �.21 �.33 �.10 �.07 �.15 .01 .25 .14 .36
_Time2 �.31 �.42 �.20 �.38 �.45 �.31 �.33 �.39 �.25 �.20 �.24 �.15 �.09 �.16 �.02
_Visit 1.36 1.06 1.60 �13.84 �26.92 �5.75 �.41 �.60 �.24 .89 .80 .99 1.29 1.18 1.40
_AdStock � Visit .77 �1.11 2.62 �2.85 �20.06 17.69 1.66 .32 3.07 .45 �.19 1.19 �.52 �1.46 .46
_Time � Visit .47 .14 .79 1.11 �7.39 11.31 .61 .25 .92 .13 .01 .25 �.16 �.32 .00

a2 k _(Intercept) �5.53 �5.65 �5.43 �7.15 �9.12 �6.05 �22.79 �32.91 �14.64 �4.21 �4.32 �4.11 �2.84 �2.92 �2.76
_AdStock 6.73 5.14 8.36 7.87 4.70 11.09 �3.18 �20.91 15.78 4.53 3.42 5.81 1.88 1.10 2.76
_AdStock2 �4.99 �7.16 �3.14 �6.36 �8.53 �4.45 �1.82 �20.87 12.40 �2.23 �3.75 �1.20 �.41 �1.18 .21
_Time �.27 �.38 �.15 �.03 �1.10 1.51 2.07 �7.16 10.86 �.21 �.27 �.15 .04 �.05 .12
_Time2 �.34 �.41 �.28 �.45 �.52 �.39 �3.37 �11.20 3.25 �.25 �.30 �.19 �.14 �.19 �.09
_Visit 1.06 .89 1.23 �12.35 �24.63 �5.53 �3.59 �19.66 8.66 1.00 .91 1.08 1.54 1.44 1.66
_AdStock � Visit �.50 �2.15 1.12 �2.99 �19.93 14.29 �2.27 �18.79 16.13 .06 �.61 .66 �.78 �1.51 .02
_Time � Visit .47 .23 .70 3.05 �3.40 12.46 �.99 �17.03 12.73 .10 �.04 .21 �.29 �.42 �.17

a3 k _(Intercept) .01 �.15 .17 .21 .11 .34 .00 �.19 .17 .22 .15 .30 .19 .11 .26
_AdStock .00 �.14 .16 .06 �.11 .24 .01 �.16 .20 .05 �.10 .18 .05 �.15 .24
_AdStock2 �.01 �.17 .12 �.01 �.20 .19 .00 �.15 .19 .03 �.14 .22 .00 �.18 .23
_Time .00 �.17 .18 �.02 �.11 .05 �.02 �.23 .16 �.03 �.08 .04 .00 �.09 .07
_Time2 .01 �.18 .19 .02 �.02 .07 .00 �.18 .17 .03 �.01 .08 .02 �.03 .07
_Visit �.01 �.15 .14 �.02 �.18 .20 .01 �.20 .19 .01 �.09 .11 �.06 �.17 .02
_AdStock � Visit .02 �.15 .20 .00 �.18 .20 .00 �.21 .19 .02 �.16 .22 .02 �.15 .18
_Time � Visit .00 �.16 .17 .01 �.16 .22 .00 �.22 .17 .05 �.04 .13 �.10 �.19 .00

Notes: Values in boldface indicate significant coefficient estimates based on a 95% confidence interval.

9. It may appear that the correlations between the vectors for a1 k and a2 k are

high within each latent class. This is an artifact of the choice of Visits¼ 0 as the

base category; these correlations fail to evince any clear pattern when the

model is reestimated, for example, using Visits ¼ 1 as a base category.
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site, over a range of focal covariates (e.g., AdStock, time

elapsed since last exposure), computed through:

EðŷkÞ ¼
1

Nk

X
i2fi:Ci¼kg

1

D

XD

d¼1

f̂1itkd þ f̂2itkd

X1
yit¼2

yitp2 ðyit jmitkd; t
2
kdÞ

" #
;

ð11Þ

where the simulated values for ŷ k; f̂ itkd; p2 ðy it jm itkd; t
2
kdÞ

are as given in Equation 8, using estimated parameters

fâ kd; m̂ kd; t̂ kd; û idg, and d ¼ 1, . . . , D indexes Markov chain

Monte Carlo draws.

Managerially relevant summaries of focal input variables—

AdStock and Time—can be obtained by calculating the “lift”

of the Eð ŷ kÞ summary measure (i.e., the number of expected

visits) under one-standard-deviation increases in each input

relative to the baseline values based on the actual observation.

The calculated lifts (Table 4) are analogous to model coeffi-

cient estimates but instead show by what factor the number of

expected visits change, providing a scale-free effects measure

(against a baseline of 1). These lift factors vary substantially

across latent classes, illustrating the degree of heterogeneity in

response. Notably, expected visits increase by 11%–93%
across classes as AdStock increases by one standard deviation,

with the largest bump for the weary class (Class 2). By contrast,

all classes show approximately 10% drops as Time (since last

exposure) increases by one standard deviation. Lift results are

consistent with coefficient estimates (Table 3) but integrate

them into single metrics, thereby illustrating strong between-

class covariate differences.

Although the lift measures ably summarize marginal co-

variate impacts, they are only static summary measures. To

illustrate both AdStock and dynamic effects (time, prior visits),

Figure 2 breaks out expected number of visits as a function of

both SAI ( SAI it in Equation 6) and Time (since last exposure,

in days), for each of the five classes, over its relevant range

(95% of the x-axis covariate). Although this produces different

abscissa and ordinate scalings for each class (i.e., each sub-

graph), it mitigates outlier effects and ensures that each is

focused on covariate effects within the data range practiced for

each of the five classes.

Recall that the firm did not use an individual-level capping

strategy. Figure 2 was constructed using all users in the data set

and individual posterior draws with the key input variables

varying over the 95% observed range. In each subgraph, the

dark gray ribbon shows the 50% pointwise highest density

region (25%–75%) and the light gray ribbon shows the 95%
highest density region (2.5%–97.5%) of the estimated expected

visits. This magnitude varies greatly by class, with Class 1

having an expected number of visits about two orders of mag-

nitude smaller than that of Classes 2, 4, and 5. Summary sta-

tistics regarding by-class response shapes appear in Table 5.

The patterns of advertising response over SAI show

marked differences across the latent classes. Class 2, which

contains 24% of users in the sample, shows a pronounced

wearout pattern, with clear concavity in the response function,

as well as evidence of weariness. To assess the strength of this

evidence for weariness, we compute advertising response

contours using each user’s posterior draws and check whether

each individual contour has an interior maximum. In Class 2,

100% of contours have internal maxima within the (95th-per-

centile) observed range of SAI. In other words, we can con-

clude that the (median) response function estimate has a

negative slope beyond a particular point well within the range

of SAI observed in the data. For Class 2, specifically, weari-

ness sets in at a cumulated ad exposure level corresponding to

being exposed to three impressions within two days. (We note

that these findings are robust to several alternate measures of

cumulated ad spending [e.g., a fixed window and/or alterna-

tive values of the smoothing constant]; detailed results are

available from the authors.)

Although it cannot be called conclusive, Class 3 also

demonstrates substantial degrees of weariness, with 82% of

contours having internal maxima (most of the users within the

class show weariness). This class, however, is smaller (7.8% of

the sample), with fairly low baseline visit propensity (expected

number of visits ¼ .13). Despite 72% of contours showing

weariness, Class 1 is both small (2.4%) and nearly nonrespon-

sive, with .004 expected visits. The remaining classes (Classes

4 and 5) display strongly monotonic (quasilinear), increasing

response functions (solid lines in Figure 2). Thus, in the end,

only Class 2 can be claimed to be both responsive to advertis-

ing and weary.

The response shapes over “time since last visit” (right side

of Figure 2) consistently show concavity with interior maxima.

The timings for these maxima vary across classes: earliest in

Class 5 (four days) and latest in Class 1 (ten days). Although

this result may speak to the potential for superior ad spacing,

we note that doing so requires analyzing both AdStock and

Timing in a full-scale dynamic optimization framework under

budget constraints, as in the line of research on pulsing (Maha-

jan and Muller 1986).

In summary, the model clearly distinguishes users’ (latent)

heterogeneous responses with respect to AdStock and Time

(since last exposure). We stress again that the model was not

purposely built to distinguish response shapes—the latent

classes could differ strongly in effects parameters, but none

could have exhibited weariness—yet weariness is strongly

apparent in one sizeable class (Class 2). As such, despite visual

similarities in the contours across classes (e.g., Classes 4 and 5

in Figure 2), the scales of effects (and, as we explore subse-

quently, individual class probability effects) differ markedly

across them.

Table 4. Lifts in Expected Number of Visits (No Change ¼ 1).

K = 1 K = 2 K = 3 K = 4 K = 5

AdStock 1.57 1.93 1.62 1.52 1.11
Time .94 .91 .90 .84 .82

Notes: Lifts are calculated for a one-standard-deviation change in AdStock and
Time.
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Publishers’ Effectiveness

The estimates of f l jg, which represent the differential weights

of publishers within the AdStock specification, show a substan-

tial degree of variation. We define a metric H kð jÞ that captures

how much a given publisher j delivers exposures to a particular

class k, relative to its entire population baseline exposure. For-

mally, if h kð jÞ is total number of ad exposures to class k by

publisher j, we define

HkðjÞ ¼
hkðjÞ=

P
jhkðjÞP

khkðjÞ
�P

k

P
jhkðjÞ

:

In simple terms, H kð jÞ>1 means that the publisher is show-

ing more ads to Class k than the average across the user sample.

Table 6 summarizes results for publisher effectiveness

f l jg, including median and 95th quantile estimates, effective-

ness rank, size (proportion of impressions allocated to that
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Figure 2. Ad response contours.
Notes: The horizontal and vertical axes are selected for each subgraph to best showcase its contours within the relevant range of ad exposures for the depicted
class.
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publisher), and H kð jÞ. Recall that f l jg are drawn from a

gamma density with mean 1 and hierarchical variance para-

meter ŷ, with an estimated value of .25; this reflects the fact

that some publishers’ ads seem to have substantially greater

impact than others, e.g., l̂19 ¼ 2:16 (the most effective) is

more than nine times that for the 26th, l̂26 ¼ :23. Note that

the publishers are indexed by size (i.e., j ¼ 1 has the largest

volume of traffic). As one might therefore expect, the first three

publishers account for the bulk (in fact, more than 50%) of

impressions allocated in the sample. However, estimated

f l jg corresponds only roughly to publisher size: the three

publishers with highest estimated ad impact (j ¼ 13, 17, 19)

deliver only 6% of impressions collectively. Combining these

patterns in f l jg and H kð jÞ with the class-wise response

shapes (Figure 2) is broadly suggestive regarding publisher

allocation.10 For example, advertisers may find it worthwhile

to increase exposure levels for Publisher 5 within Class 5

because it appears low (93% vs. baseline), given the publisher’s

high effectiveness ( l̂5 ¼ 1:47) and the class’s lack of weari-

ness; the same could be said of Class 3 for Publisher 19 (94%;

l̂19 ¼ 2:16). By contrast, advertisers might want to hold off on

further exposures for Class 1 (the least effective class) using

Publishers 22 and 26, because these publishers already deliver

high exposure levels (164% and 171%, respectively) and are

not particularly effective ( l̂22 ¼ :74 and l̂26 ¼ :23).

Class Membership Influence

Thus far, we have found that there are five groups with dis-

tinctive ad reaction patterns; some evidence wearout (Classes 1

and 3), one (Class 2) shows clear signs of responding nega-

tively after a certain number of repetitions, whereas the others

have positive marginal response to ads across their observed

domain. These findings are informative to advertisers overall

but are especially valuable when they can apportion users into

these response groupings. Advertisers need to capitalize on

user-specific information to enact distinct ad strategies without

compromising user privacy. As we mentioned in the “Data”

section, we used a separate data set precollected by the agency

before the ad campaign consisting of browsing behaviors.

These variables can be used to compute users’ membership

indicators ( C i) and thereby enable us to investigate the rela-

tionship between membership and browsing behavior, as sum-

marized in Table 7.

An intriguing finding is the relationship between browsing

frequency (g numDays
k ) and class membership probability ( p k).

Notably, users with lower rates of browsing frequency are more

likely to show weariness (Classes 1 and 2; e.g.,

g numDays
2 ¼ �8:04), whereas those with greater frequency tend

toward quasilinear response shapes—that is, to be nonweary

(Classes 4 and 5; e.g., g numDays
5 ¼ 6:20). This suggests that if

light internet users (i.e., people with low browsing frequency)

are repeatedly exposed to ads, they are more likely to tire of

and, in turn, respond negatively to those ads. We speculate (i.e.,

in the absence of attitudinal data) that this phenomenon may

arise because light users, who are less familiar with the online

environment, are put off when they encounter a large number

of ads; by contrast, heavy users are awash in ads and do not find

them off-putting when they encounter many extra ones, though

confirmation of such a process-based explanation awaits addi-

tional dedicated data.

Users in Class 1 visit a large number of websites (numSites),

while those in weary Class 2, in addition to having low brows-

ing frequency, visit a small number of sites and show relatively

little interest in topics such as e-commerce, media, and finance

(strongly negative coefficients for each). Class 3 users fall in

between in terms of browsing behavior (numDays) but visit

fewer sites, such as those with specific topical and/or beha-

vioral relation to the focal site (finance, e-commerce, or

media). Users in Class 4 are frequent and broad internet brow-

sers, but like those in Class 2, they show little interest in topics

relevant to advertisers. Finally, the heaviest internet users

whose interests align with the advertiser are likely to belong

to Class 5. Such links between class membership and beha-

vioral (or other) covariates can serve a function similar to dis-

criminant analysis: overlaying additional data valuable for

targeting, thereby parceling incoming (or other) users into pre-

viously identified classes and thus helping project their likely

ad response pattern.

Discussion and Simulation of
Alternative Allocation Policies

Does “Weariness” Exist?

The model presented accounts for three sources of heterogene-

ity: normally distributed individual-level baselines, gamma-

distributed publisher-specific effects, and a discrete (latent

class) account of advertising response. Consider a model where

the first two sources of heterogeneity were taken into account,

but advertising response parameters were presumed identical

(homogeneous) for all customers. Such a model would not

Table 5. Summaries of Response Shapes.

Class 1 Class 2 Class 3 Class 4 Class 5

Class size
(proportion)

2.35% 24.37% 7.80% 57.78% 7.71%

Average exposures
per user

2.45 2.60 3.22 2.55 3.78

Average # of
expected visits

.004 .48 .13 .53 1.20

Peak # of expected
visits

.005 .77 .21 .93 1.61

SAIit at peak 3.29 2.15 4.43 3.29 3.06
Coefficient of

variation
1.96 2.05 1.89 2.00 5.43

10. We note here that a rigorous assessment of whether a particular publisher

was truly “overadvertising” would require, at the very least, impression costs

for each site, as well as some account of customer lifetime value. Although

publishers and advertisers do have such data, their data were proprietary.
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show that all viewers were identical, because their baselines to

visit the advertiser (intercepts) would still differ, and of course

publishers would still have differential effectiveness. The pat-

terns of advertising response over SAI (Equation 6) of such a

model appear in Figure 3, and they are in agreement with many

previous analyses: response shapes exhibit diminishing mar-

ginal returns but still increase notably without an eventual

downturn; indeed, none of the individual response curves exhi-

bits weariness. In other words, advertising shows the classic

contours of wearout, but weariness is nowhere to be found.

However, when advertising response heterogeneity is taken

into account, distinct reactions over ad repetitions are evident.

The majority of users still exhibit diminishing returns, but the

degree of wearout varies greatly, both in terms of curvature and

in the level of exposure when it starts to set in: although Classes

4 and 5 appear to have quasilinearly increasing responses,

Classes 1 and 3 exhibit wearout with some degree of potential

weariness (but low responsiveness overall), whereas Class 2

shows decisive tendencies toward a weary response pattern.

In other words, and in what we believe to be an important novel

finding of our analysis: assuming advertising response homo-

geneity mistakenly implies a lack of weariness, essentially

averaging it out of view.

To bolster these findings regarding weariness, we conducted

checks to determine whether the existence of weary groups

hinges on particular model specifications or sample selection

Table 6. Differential Publisher Effectiveness.

HkðjÞ, % Change Above Baseline Exposure

j Mdn 2.5% 97.5% Rank Size Class 1 Class 2 Class 3 Class 4 Class 5

1 .44 .36 .58 26 14% 109% 98% 99% 101% 97%
2 .86 .71 1.00 15 16% 93% 103% 104% 99% 99%
3 1.48 1.21 1.80 4 5% 110% 99% 106% 99% 101%
4 .75 .65 .91 20 8% 95% 100% 96% 101% 97%
5 1.47 1.22 1.70 5 3% 95% 105% 100% 99% 93%
6 1.06 .92 1.27 10 4% 83% 103% 92% 99% 110%
7 .79 .60 .95 19 3% 74% 103% 103% 100% 91%
8 1.26 1.09 1.45 7 3% 89% 100% 101% 101% 97%
9 1.22 .97 1.55 8 2% 113% 103% 89% 101% 91%
10 .99 .87 1.25 11 3% 140% 106% 97% 98% 89%
11 .73 .61 1.03 22 2% 94% 93% 100% 103% 104%
12 .93 .75 1.23 12 1% 122% 104% 101% 97% 101%
13 1.73 1.58 2.28 2 2% 107% 96% 104% 101% 101%
14 .47 .33 .68 25 2% 76% 92% 107% 104% 93%
15 .92 .74 1.36 14 1% 90% 93% 117% 98% 122%
16 1.12 .82 1.38 9 2% 92% 103% 107% 97% 106%
17 1.72 1.26 2.11 3 2% 82% 98% 104% 102% 92%
18 1.37 .81 1.65 6 2% 118% 103% 102% 95% 117%
19 2.16 1.82 2.57 1 1% 68% 101% 94% 96% 141%
20 .27 .19 .36 27 1% 105% 80% 92% 106% 122%
21 .55 .37 .71 24 1% 106% 82% 104% 98% 167%
22 .74 .43 .94 21 1% 164% 98% 103% 97% 108%
23 .81 .61 .99 18 1% 96% 93% 117% 100% 108%
24 .93 .66 1.25 12 1% 140% 102% 85% 102% 84%
25 .85 .56 1.17 17 1% 131% 83% 63% 113% 80%
26 .23 .19 .46 28 1% 171% 95% 77% 107% 66%
27 .59 .43 .73 23 1% 88% 93% 70% 107% 101%
28 .86 .70 .99 15 17%

Table 7. Class Membership Parameters.

Class 1 Class 2 Class 3 Class 4 Class 5

(Intercept) �22.30** (�570.24) �14.74** (�252.61) �20.61** (�609.23) �14.21** (�153.87) �19.43** (�413.09)
numDays �.41** (�9.66) �8.04** (�125.97) .45** (12.04) 4.30** (42.53) 6.20** (120.40)
numSites .18** (4.59) �.13* (�2.30) �.25** (�7.45) .16* (1.74) �.06 (�1.24)
e�Commerce .51** (12.45) �4.33** (�71.16) 4.49** (127.11) �1.11** (�11.54) .08 (1.72)
Media .60** (14.14) �4.01** (�63.46) 3.99** (108.83) �1.07** (�10.65) .16** (3.14)
Finance .24** (6.80) �1.35** (�25.18) 1.23** (39.53) �.31** (�3.62) .04 (.91)

Notes: t-statistics are in parentheses.
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criteria. First, we substantiate the log-normal portion of the

count model. As a benchmark model, we also examine the

binary model that distinguishes visits as zero versus one or

more, consistently uncovering weary classes; however, neither

rises to the 95% contour concavity standard apparent for the

full model. We note in passing that it is precisely this informa-

tion—the number of visits—that is differentially important in

determining eventual conversion, as Moe and Fader (2004)

point out. Second, we find a distinct weary class even when

imposing equal publisher effectiveness ( l j ¼ 1). Third, we

reestimate the model using the same AdStock specification

(Equation 7) but with SAI in place of log(1 þ SAI); this results

in five classes, one of which displays strong weariness, but a

dramatically poorer overall fit (roughly 15% in each of the four

fit metrics). Fourth, we excluded outliers using different per-

centiles (i.e., .1%, 1%, and 5%, vs. the .01% used previously);

in each case, there was at least one class with size greater than

30% and over 95% weary contours. The last set of checks

concerns the potential for so-called “activity bias” (Lewis and

Reiley 2014), whereby very active internet users are more

likely to both receive a high number exposures and respond

differently to advertising (compared with lighter users). This

concern is addressed in two distinct ways: (1) we constructed a

daily browsing activity variable (i.e., the number of daily web-

pages visited), using it as a control covariate, and (2) we con-

structed two additional sample data sets of 12,000 users based

on overall browsing activities, specifically, the second and

fourth quintiles of users’ total number of webpages visited).

As before, the models run in all these cases perfectly replicate

our substantive results: a single class with significant, substan-

tial weariness. In short, weariness was robust to all critical

sample selection criteria and model constructs, save one:

response homogeneity, which we turn to next. (All models

pertaining to the robustness checks and corresponding findings

are detailed in Web Appendix W-D.)

Failing to Consider Response Shape May
Contribute to Wasted Ad Exposures

Considering individual users’ responses when weariness sets in

may lead to a more nuanced understanding of ad placement

performance. This is quantified in the upper part of Table 8,

which lists the expected number of visits for each class based

on actual ad placement, an improved ad placement across pub-

lishers (as described next), and two common benchmark ad-

capping strategies: capping by publisher and capping across

publishers. The first two rows show the predicted number of

visits in-class, whose values very closely match the class means

of actual visits (82%–95%), with ads placed as in the data. The

next two rows capture ad performance when varying advertise-

ments in terms of the number of repetitions and publishers’

effectiveness. Assuming, for the sake of analysis, that users

continue visiting publishers in roughly the same proportion,

we can reapportion ads over different publishers to improve

effectiveness.11 In this case, more than 1.3% (last column of

Table 8) of ads served to the consumer sample appear to be

wasted, and even hurt the advertiser’s performance, driven by

the presence of weary users (who are primarily in Class 2,

where 3.2% of ads were apparently wasted). By contrast, none

of the ads served to Class 5—where the response curve is

nearly linearly increasing—were wasted. The improvement in

expected number of visits (accomplished by not wasting expo-

sures and improving publisher allocation) is remarkable:

through reallocation, the advertiser can achieve a 15% perfor-

mance improvement in total (and more than 34% improvement

in the weary Class 2).

For comparison, we also consider two different types of

benchmark strategies common in the advertising industry. The

first and simplest of these is to cap the maximum number of ads

that each publisher can serve to a user; such a strategy is com-

monly adopted when an advertiser contracts with a specific

publisher to limit the number of ads to a unique user (indexed

by user ID). In this case, between 2% and 7% of ads can be

saved across five classes, amounting to 4% of total ads served

to them (second-to-last row of Table 8). However, if the user

visits multiple publishers that serve the ad, the number of ads

(s)he is exposed to would exceed this optimum. This issue is

readily addressed by the second strategy, enabled by the recent

advent of online ad exchanges (in which all advertisers and

publishers are connected through networks): capping the num-

ber of ads served across all publishers. Such a program shows

that 3% to 9% of ads can be saved, or approximately 6% overall

(last row of Table 8). As might be expected, our weary Class 2

evinces the highest potential to save ads, at 9.2%. These stra-

tegies account for consumer heterogeneity, leading to differen-

tial “weariness thresholds” across consumer groups and

consequent cost-saving advantages; however, actual
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Figure 3. Response shape with single class model.

11. All analyses are based on an exhaustive sequential grid search for the best

publisher combinations, carried out in R. Full details are available from the

authors.
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performance in terms of increasing expected number of visits

is hampered by their ignoring differential effectiveness across

publishers. This admittedly simple analysis could be

enhanced with detailed ad placement cost and customer

(exposure and visit) data to help pinpoint exactly which con-

sumers, or groups thereof, are prime candidates for ad

wastage for a focal target campaign.

Conclusion

Marketing scholars have theorized for decades about whether a

pronounced downturn in cumulative ad effectiveness (weari-

ness) exists but have thus far lacked the detailed, individualized

exposure data enabling its detection. In this article, we have

examined the results of a comprehensive ad campaign with

nearly one million exposures to over ten thousand internet

users, finding that weariness manifests for roughly a quarter

of the sample within the range typical exposure levels. It is

important to note that weariness is not, either conceptually or

empirically, a specifically temporal effect. That is, weariness

does not mean that users are exposed to ads and react to them

less and less over time. Weariness is about how two otherwise

identical users can have different “stocks” of ad exposure, and

the one with lower AdStock might show a superior ad response.

These findings regarding weariness relied on a sufficiently

rich model to detect it, specifically one accounting for multi-

ple forms of heterogeneity. However, the key finding about

the very existence of a weary class was robust to a wide

variety of modeling constructs (including number of classes,

differential publisher effects, and temporal smoothing of the

AdStock metric) and sample inclusion criteria. The one incon-

trovertibly critical component was the incorporation of (latent

class) heterogeneity in response parameters across users.

Models lacking this component suggested that all users’ (indi-

vidual posterior) response contours were in fact monotoni-

cally increasing in ad response.

Given that advertisers must choose exposure or expenditure

levels and target consumers, it is vital to understand the relative

effectiveness across users, within-user overrepetition and spac-

ing of exposures, and the channels to reach those users, espe-

cially in terms of which regions might show evidence of

expenditure waste. The present study takes a first step toward

resolving these managerial issues by distinguishing several

manifested response shapes that vary in overall size, baseline

tendency to visit, and the response contours corresponding to

ad repetition, timing, and previous site visits. This means that

advertisers armed with appropriate data can profile individual

consumers in terms of their response to ad repetitions and

thereby get a relative handle on their “value” (e.g., potential

gain, risk of overexposure, or inappropriate exposure spacing).

We emphasize that this profiling can be based on members’

observed browsing behaviors prestored in the ad networks—

that is, before they are served any ads in a target campaign.

Critically, this holds for both users in the estimation sample and

new users for whom ads must be served prospectively. Because

real-time ad allocation decisions are centrally coordinated by

the ad network, the rich information available on individual

consumers (e.g., past exposure histories and corresponding

publishers) enables the estimation of weariness thresholds and

appropriate temporal exposure spacing for target individuals

whose baseline visit tendency is high. Moreover, publisher-

specific effectiveness estimates (coupled with appropriate cost

data) can help advertisers better set detailed expenditure levels.

A simulation study, using insights gleaned from our model,

demonstrated substantial performance improvements com-

pared with conventional advertising strategy and current prac-

tice in the actual data set.

The framework proposed here entails several limitations,

some of which owe to data availability and complex down-

stream real-time optimization. One open issue concerns how

to leverage the model’s estimates to optimize advertising allo-

cation across time and sites, preferably in a real-time, decision-

based system. This question is notoriously challenging, as it

requires nontrivial cost information (which itself is often dyna-

mically updated), as well as individual site-usage patterns,

which then must be coupled with combinatorial optimization

to solve the discrete advertising allocation scheduling problem.

A second concern is the presumption that impression records

accurately account for all exposures of a particular ad. Even

though weariness has clearly been detected, one can never

verify whether some ads that were served were not in fact

viewed; furthermore, although we have ruled this out deci-

sively for our data set, it is possible that ads served for retarget-

ing would also be seen by users tracked for acquisition; this

general issue is exacerbated by the need to combine exposures

across various mobile and stationary devices. Third, our results

concern only website visits. Future work could extend our

Table 8. Model Implications for Improved Ad Placement Regimen.

Class 1 Class 2 Class 3 Class 4 Class 5 Total

Original Number of ads used 692 7,608 3,017 17,660 3,492 32,469
Expected number of visits .001 .09 .03 .15 .88 .20

Enhanced Number of ads used 692 7,367 2,978 17,530 3,492 32,059
Expected number of visits .001 .12 .03 .19 .93 .23
Performance improvement 12.2% 34.1% 15.5% 21.6% 5.1% 15.1%
Proportion of ads saved .0% 3.2% 1.3% .7% .0% 1.3%

Benchmark 1 Cap number of ads for each publisher (% ads saved) 3.2% 6.8% 2.1% 3.9% 3.6% 4.4%
Benchmark 2 Cap number of ads across publishers (% ads saved) 4.4% 9.2% 2.7% 5.3% 5.0% 5.9%
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examination of the existence of weariness to the upper level of

the purchase funnel, up through eventual sales. While the pres-

ent study investigates various modeling constructs to detect and

confirm the existence of weariness, all findings are based on

website visit behavior, which primarily reflects the awareness

and interest levels of the purchase funnel. Although website

visits arguably approximate final conversion values, one can-

not rule out the possibility that the weariness may wane over

the purchase funnel, a fertile topic for future research. Finally,

understanding why certain publishers are more effective than

others, and the potentially synergistic effects of combinations

of publishers, are compelling research questions. Although the

current study cannot address them because of data limitations,

we view these extensions as both worthwhile and within the

purview of advertisers armed with appropriate additional infor-

mation and sufficient computational resources.
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Drèze, Xavier, and François-Xavier Hussherr (2003), “Internet Adver-

tising: Is Anybody Watching?” Journal of Interactive Marketing,

17 (4), 8–23.

Gelman, Andrew, Jessica Hwang, and Aki Vehtari (2014),

“Understanding Predictive Information Criteria for Bayesian Mod-

els,” Statistics and Computing, 24 (6), 997–1016.

Gelman, Andrew, and Donald B. Rubin (1992), “Inference from Itera-

tive Simulation using Multiple Sequences,” Statistical Science, 7

(4), 457–72.

Germann, Frank, Peter Ebbes, and Rajdeep Grewal (2015), “The Chief

Marketing Officer Matters!” Journal of Marketing, 79 (3), 1–22.

Chae et al. 73

https://doi.org/10.1186/s40488-015-0028-6


Google Adsense Usage Statistics (2018), (accessed July 16, 2018),

calendar.google.com/calendar/render#main_7.

Haugtvedt, Curtis P., David W. Schumann, Wendy L. Schneier, and

Wendy L. Warren (1994), “Advertising Repetition and Variation

Strategies: Implications for Understanding Attitude Strength,”

Journal of Consumer Research, 21 (1), 176–89.

Hoban, Paul R., and Randolph E. Bucklin (2014), “Effects of Internet

Display Advertising in the Purchase Funnel: Model-Based Insights

from a Randomized Field Experiment,” Journal of Marketing

Research, 52 (3), 375–93.

Interactive Advertising Bureau and PricewaterhouseCoopers (2017),

“IAB Internet Advertising Revenue Report 2016 Full Year

Results,” (April), https://www.slideshare.net/frenchweb/iab-inter

net-advertising-revenue-report-2016-75468917.

Irwin, Julie R., and Gary H. McClelland (2001), “Misleading Heur-

istics and Moderated Multiple Regression Models,” Journal of

Marketing Research, 38 (1), 100–109.

Kamakura, Wagner A., Michel Wedel, and Jagadish Agrawal (1994),

“Concomitant Variable Latent Class Models for Conjoint Analysis,”

International Journal of Research in Marketing, 11 (5), 451–64.

Keele, Luke, and Nathan J. Kelly (2005), “Dynamic Models for

Dynamic Theories: The Ins and Outs of Lagged Dependent

Variables,” Political Analysis, 14 (2), 186–205.

Kireyev, Pavel, Koen Pauwels, and Sunil Gupta (2013), “Do Display

Ads Influence Search? Attribution and Dynamics in Online Adver-

tising,” International Journal of Research in Marketing, 33 (3),

475–49.

Lambrecht, Anja, and Catherine Tucker (2013), “When Does Retar-

geting Work? Information Specificity in Online Advertising,”

Journal of Marketing Research, 50 (5), 561–76.

Lewis, Randall (2017), “Worn-Out or Just Getting Started? The Impact

of Frequency in Online Display Advertising,” working paper.

Lewis, Randall A., and Justin M. Rao (2015), “The Unfavorable Eco-

nomics of Measuring the Returns to Advertising,” Quarterly Jour-

nal of Economics, 130 (4), 1941–73.

Lewis, Randall A., and David H. Reiley (2014), “Online Ads and

Offline Sales: Measuring the Effect of Retail Advertising Via a

Controlled Experiment on Yahoo!” Quantitative Marketing and

Economics, 12 (3), 235–66.

Li, Hongshuang (Alice), and P.K. Kannan (2014), “Attributing Con-

versions in a Multichannel Online Marketing Environment: An

Empirical Model and a Field Experiment,” Journal of Marketing

Research, 51 (1), 40–56.

Limpert, Eckhard, Werner A. Stahel, and Markus Abbt (2001), “Log-

Normal Distributions across the Sciences: Keys and Clues on the

Charms of Statistics,” Bioscience, 51 (5), 341–52.

Little, John D. (1979), “Aggregate Advertising Models: The State of

the Art,” Operations Research, 27 (4), 629–67.

Mahajan, Vijay, and Eitan Muller (1986), “Advertising Pulsing Poli-

cies for Generating Awareness for New Products,” Marketing Sci-

ence, 5 (2), 89–106.

Manchanda, Puneet, Jean-Pierre Dubé, Khim Yong Goh, and Pradeep
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